
EP1001 FURTHER

DIGITAL FABRICATION

& PROTOTYPING

Embedded

Programming

COMPUTER ARCHITECTURES

• Computers follow 2 basic memory architectures

• Von Neumann: shared instruction & data space

• Harvard: separate instruction & data space

• CPU architectures can be

• CISC: complex, multi-cycle instructions

• RISC: simple, single cycle instructions

• Specialized CPUs include

• GPU: graphics processing unit

• TPU: tensor processing unit (for AI tasks)

• Hardware implementation

• CPUs: general purpose, slower

• FPGAs: field (end-user) programmable, custom circuits

• ASICs: application specific, highly customised at IC manufacturer level

https://www.geeksforgeeks.org/computer-organization-architecture/difference-between-von-neumann-and-harvard-architecture/
https://www.geeksforgeeks.org/computer-organization-architecture/computer-organization-risc-and-cisc/
https://www.geeksforgeeks.org/computer-organization-architecture/computer-organization-risc-and-cisc/
https://www.datacamp.com/blog/tpu-vs-gpu-ai
https://www.datacamp.com/blog/tpu-vs-gpu-ai
https://www.pcb-hero.com/blogs/lickys-column/cpu-vs-gpu-vs-fpga-vs-asic
https://www.pcb-hero.com/blogs/lickys-column/cpu-vs-gpu-vs-fpga-vs-asic

MICROPROCESSORS

VS

MICROCONTROLLERS

VS

SOC

Microprocessors

• general purpose processors

• require external hardware (memory,
peripherals)

Microcontrollers

• integrate CPU, memory, peripherals within a
single chip

• limited memory

• CPU not as fast as microprocessors

System on a Chip (SoC)

• Single IC that combines most or all
components of a computer on a single chip

• Includes CPU, GPU, memory, I/O ports,
peripherals, wireless connectivity and display
units

TYPES OF

MEMORY
Registers (within CPU)

Non-volatile memory

• PROM

• EPROM

• EEPROM

• Flash memory

• NVRAM

Volatile memory

• SRAM

• DRAM

Fuse (for configuration settings)

TYPICAL

MICROCONTROLLER

PERIPHERALS

Input/Output ports

Analog-to-Digital converters

Analog comparators

Digital-to-analog converters

Timer/Counter units

PWM waveform generators

UART (Serial Communications)

USB interface

PROCESSOR

FAMILIES

• 8051

• PIC

• AVR

• ATmega328

• ATtiny412, ATtiny1614, ATtiny3216

• ARM

• ATSAMD11, ATSAMD21

• STM32

• Raspberry Pi

• RP2040

• RP2350

• Xtensa

• ESP8266

• ESP32

• RISC-V

• ESP32-C3, ESP32-C6, ESP32-S3

MICROCONTROLLER

PROGRAMMING

LANGUAGES

Assembly language

C/C++

MicroPython/CircuitPython

JavaScript

Basic

Forth

Lua

DEVELOPMENT
ENVIRONMENTS
• Arduino IDE: C/C++, Arduino sketch

• Visual Studio Code / Platform IO:

multiple languages

• Eclipse: multiple languages

• Microchip Studio: C/C++

• GCC: C/C++

• Thonny IDE: MicroPython,

CircuitPython

SIMULATORS

• Tinkercad Circuits

• Basic electronics

• Arduino Uno

• ATtiny85

• Micro:bit

• Wokwi

• Arduino Uno, Mega

• ATtiny85

• ESP32

• STM32

• Raspberry Pi Pico

MICROPYTHON BASICS

ESP32 Raspberry Pi PicoMicroPython Getting Started Guide

https://docs.micropython.org/en/latest/esp32/tutorial/intro.html
https://docs.micropython.org/en/latest/rp2/quickref.html

MICROPYTHON BASICS

MICROPYTHON BASICS

MICROPYTHON

BASICS

• Importing libraries

• Import vs from … import

ARDUINO (C/C++) BASICS

Getting Started with the ESP32C3 Supermini
Arduino-Pico ReadTheDocs

https://randomnerdtutorials.com/getting-started-esp32-c3-super-mini/
https://arduino-pico.readthedocs.io/en/latest/
https://arduino-pico.readthedocs.io/en/latest/
https://arduino-pico.readthedocs.io/en/latest/
https://arduino-pico.readthedocs.io/en/latest/

ARDUINO (C/C++) BASICS

ARDUINO (C/C++) BASICS

ARDUINO (C/C++) BASICS

ARDUINO (C/C++) BASICS

HANDS-ON EXERCISES

INTRODUCTION

TO WOKWI

• online electronics simulator

• Supports multiple microcontroller families:

• Arduino

• ESP32

• Raspberry Pi Pico

• STM32

• Supports C/C++ and MicroPython, Rust

• Extensive component library

• Advanced features

• Wifi simulation

• Virtual logic analyzer

• VS Code integration

Website: https://wokwi.com/

Makerpro Wokwi Tutorial

https://wokwi.com/
https://maker.pro/arduino/tutorial/getting-started-with-wokwi-arduino-simulation-made-easy
https://maker.pro/arduino/tutorial/getting-started-with-wokwi-arduino-simulation-made-easy
https://maker.pro/arduino/tutorial/getting-started-with-wokwi-arduino-simulation-made-easy

EXERCISE 1: ESP32-C3 HELLO WORLD (C/C++)

• Go to the Wokwi website: https://wokwi.com

• Select ESP32 simulation, then ESP32-C3 starter template

• Add an LED and a resistor as shown in the diagram

• Wire the components:

• LED cathode to GND, anode to resistor to GPIO8

• Set resistor value to 200 ohms

• Enter the code on the left panel.

• Start the simulation

• Try changing the delay interval and run the simulation again

https://wokwi.com/

EXERCISE 2: ESP32-C3
HELLO WORLD (MPY)
• Start a new MicroPython project

• Scroll down to Starter Project, select MicroPython on
ESP32-C3

• Add an LED and a resistor

• Wire the components as shown

• LED: cathod to GND, anode to resistor to GPIO8

• Set resistor value to 200 ohms

• Enter the MicroPython code as shown

• Run the simulation

• Modify the program:

• Use led.toggle() instead of led.on() / led.off()

• Change delay interval to 250 ms

EXERCISE 3: RP2040 HELLO (MICROPYTHON)
• Start a new MicroPython project

• Scroll down to Starter Project, select MicroPython on
Raspberry Pi Pico

• Add an LED and a resistor

• Wire the components as shown

• LED: cathode to GND, anode to resistor to GPIO8

• Set resistor value to 200 ohms

• Enter the MicroPython code as shown

• Run the simulation

• Modify the program:

• Use led.toggle() instead of led.value(1) / led.value(0)

• Change delay interval to 1 s

EXERCISE 4: ESP32C3 CONTROLLING LED W/PWM

• Start a GenAI chat (deepseek, gemini)

• Write a prompt, asking GenAI for advice on writing a
micropython program for the ESP32C3 to read input
values from a potentiometer and use it to control the
intensity of an LED.

• Start a Wokwi ESP32C3 micropython project. Examine
the GenAI code, add components and wire the circuit.

• Copy the code to Wokwi and run the simulation.

• Did the simulation work?

• Determine the problem (if any) and ask GenAI to
generate an updated program.

• Repeat the process until you get a working program.

EXERCISE 5: PI PICO NEOPIXEL CONTROL

• Start a GenAI chat (deepseek, gemini)

• Write a prompt, asking GenAI for advice on writing a
micropython program to control a neopixel ring display using a
pushbutton connected to a Pi Pico board. The LEDs start in the
OFF state. Each time the pushbutton is pressed, the LEDs will
cycle through different colors, e.g. red, green, blue, then OFF.

• Start a Wokwi Raspberry Pi Pico micropython project.
Examine the GenAI code, add components and wire the
circuit.

• Copy the code to Wokwi and run the simulation.

• Did the simulation work?

• Determine the problem (if any) and ask GenAI to generate an
updated program.

• Repeat the process until you get a working program.

CHALLENGE EXERCISE 1

• You have been tasked to develop a portable
environmental monitoring device, comprising
of an ESP32-C3 board with 128x64 OLED
screen which will sample and display the
ambient temperature and humidity

• With the aid of GenAI:

• Document the components and wiring diagram
for the system

• Write a micropython program to perform the
required actions

• Document the GenAI prompts and outputs,
including the debugging/troubleshooting steps
used to develop your solution

CHALLENGE EXERCISE 2
• To help maintain hygiene in hospital wards, you have

been tasked to develop an automated sanitizer
dispensing unit which comprises of a Pi Pico board, an
ultrasonic sensor, a servo motor and an LED indicator.

• When the user places his hand(s) at a distance of < 3
cm from the ultrasonic sensor, the servo motor will be
activated to dispense the sanitizer lotion. The LED will
light up at the same time to indicate that sanitizer
lotion is being dispensed.

• With the aid of GenAI:

• Document the components and wiring diagram for the
system

• Write a micropython program to perform the required
actions

• Document the GenAI prompts and outputs, including the
debugging/troubleshooting steps used to develop your
solution

INSTALLING ESP32 SUPPORT FOR ARDUINO IDE

• Ref: Xiao ESP32-C3 Wiko: Getting Started

• Download and install the latest version of the
Arduino IDE

• Launch the Arduino application

• Click the BOARDS MANAGER icon and
type “esp32” in the search bar

• Select “esp32 by Espressif Systems” and click
install

• Follow the same procedure to install support
for the RP2040 MCU

https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/

INSTALLING THONNY IDE FOR MICROPYTHON

• Ref: Getting Started with Thonny MicroPython

• Go to https://thonny.org, download Thonny IDE

• Run the installer

• After Thonny IDE is installed, to program the

microcontroller board, you need to flash the

MicroPython firmware to the MCU board

• Connect your ESP32-C3 board, then press “Boot” +

“Reset”, release “Reset”, followed by “Boot” to

place the board in the bootloader mode

• Run Thonny IDE. Click Tools > Options >

Interpreter

https://randomnerdtutorials.com/getting-started-thonny-micropython-python-ide-esp32-esp8266/
https://randomnerdtutorials.com/getting-started-thonny-micropython-python-ide-esp32-esp8266/
https://thonny.org/

FLASHING MICROPYTHON FIRMWARE

• Click “Install or update MicroPython”

• Select the target port “USB JTAG/serial

debug unit @COMx”

• Select MicroPython Family, variant, version

• Click “Install” to flash the firmware to the

ESP32-C3 board

• Once the firmware has been uploaded, click

the “Close” button, followed by OK to

return to Thonny IDE

VERIFYING MICROPYTHON FIRMWARE

• Once you return to Thonny IDE, verify that

MicroPython has been correctly installed on

the ESP32-C3 board

• You should see the MicroPython REPL

prompt (>>>)

• If you do not see the REPL prompt, you

may need to press “Reset” on the ESP320C3

board, “STOP” icon on Thonny IDE or

check Tools > Options > Interpreter to

verify that the correct COMport has been

selected

	Slide 1: EP1001 Further Digital Fabrication & Prototyping
	Slide 2: Computer architectures
	Slide 3: Microprocessors vs microcontrollers vs soc
	Slide 4: Types of memory
	Slide 5: Typical microcontroller Peripherals
	Slide 6: Processor families
	Slide 7: Microcontroller Programming languages
	Slide 8: Development environments
	Slide 9: Simulators
	Slide 10: Micropython basics
	Slide 11: Micropython basics
	Slide 12: Micropython basics
	Slide 13: Micropython basics
	Slide 14: Arduino (c/c++) basics
	Slide 15: Arduino (c/c++) basics
	Slide 16: Arduino (c/c++) basics
	Slide 17: Arduino (c/c++) basics
	Slide 18: Arduino (c/c++) basics
	Slide 19: Hands-on exercises
	Slide 20: Introduction to Wokwi
	Slide 21: Exercise 1: ESP32-c3 Hello world (C/C++)
	Slide 22: Exercise 2: ESP32-C3 Hello world (mpy)
	Slide 23: Exercise 3: RP2040 HELLO (Micropython)
	Slide 24: Exercise 4: esp32c3 controlling led w/pwm
	Slide 25: Exercise 5: Pi pico neopixel control
	Slide 26: Challenge Exercise 1
	Slide 27: Challenge Exercise 2
	Slide 28: Installing ESP32 support for Arduino IDE
	Slide 29: Installing thonny ide for micropython
	Slide 30: Flashing micropython firmware
	Slide 31: Verifying MICROPYTHON FIRMWARE

